Deep Learning (7) - Machine Learning Strategy

Edit

所谓Machine Learning Strategy就是如何调整学习的策略,来达到更好的准确率。Andrew提到这一门课(Structuring Machine Learning Projects)的两周的内容,通常是一些机器学习项目的经验之谈,在学校的课程中通常不会有提及。

Orthogonalization

Orthogonalization,译作正交化,类似coding时候的解耦(decouple)。通过一些正交化的调整策略来修正相关条件下的模型准确率。一般有下面4中策略:

When a supervised learning system is design, these are the 4 assumptions that needs to be true and orthogonal.

  1. Fit training set well in cost function
    • If it doesn’t fit well, the use of a bigger neural network or switching to a better optimization algorithm might help.
  2. Fit development set well on cost function
    • If it doesn’t fit well, regularization or using bigger training set might help.
  3. Fit test set well on cost function
    • If it doesn’t fit well, the use of a bigger development set might help
  4. Performs well in real world
    • If it doesn’t perform well, the development test set is not set correctly or the cost function is not evaluating the right thing.

Andrew也提到之前提到的一种regularization的方法——early stopping,就不是一种正交化的调整策略。他同时想做好第1和第2点。

Setting up your goal

做一个机器学习的项目,通常是下面这个过程,Idea->Code->Experiment->Idea,不断的迭代得到最终优化的模型。

Single real number evaluation metric

如果针对一个测试有两个指数型指标,这就很难取舍。这会降低上面这个循环的效率,甚至最终的模型准确度。所以这里才会提出单一评价标准。例如下面的例子:

Precision: Of all the images we predicted y=1, what fraction of it have cats?
Recall: Of all the images that actually have cats, what fraction of it did we correctly identifying have cats?

这两个指标当然都是越大越好,那如何评定Classifier A和B?
之前的一篇博文Machine Learning (2) - Neural Network中关于skewed data的一节中,有提到F1-score。这里就是通过F1-score来整合precision和recall来得到一个统一的标准。
F1-score
这个算法又称为”Harmonic Mean”。

计算Precision和Recall的”均值“只是一个例子,通常我们要自己思考出如何能产生一个易于评估的单一指数标准。

Satisficing and Optimizing

这里指,检验试验结果的指标,通常可以分成两类,即Satisficing和Optimizing。
Satisficing类指标指的是只要达到一定的阈值,再优化也不太会影响试验结果的优劣。例如,运行时间达到100ms即可,80ms和90ms的运行时间差别,并不能带来什么改善。
Optimizing类指标指的就是一些数值类的指标,例如准确率,一点点改善都会影响试验结果的评判。
下面是一个具体的例子:

Train/dev/test distributions

在做机器学习项目时,通常需要对样本数据进行分割。而不是将所有的样本都用于训练。上一章提到要对试验结果进行评估,而这个评估就是在dev或者test set上进行的。所以有一个合适的dev/test set对模型的迭代以及项目的推进,有着至关重要的影响。

  • Training set: 迭代得到各个模型参数(W, b, , )
  • Development (dev) set: 在一轮循环中验证training结果的正确性,以便下一轮调整模型(包括超参数的调整,是否采用正则化,网络结构的调整等等)
  • Test set: 在所有循环结束后,来验证最终模型的正确性。

如何分割?

在样本数据不太多(数千数万的级别)的时候,一般如下分割:

Guide Line

同一分布

分割样本数据的时候必须保证training,dev,test set均来自于同一种分布。

反映最终应用场景

dev/test set必须反应最终模型的应用场景。
例如cat detector,训练,测试都是采用网络上清晰度很高的图片,但使用时发现用户上传的很多都是清晰度不高的照片,那识别率肯定是不能令人满意的。这就是dev/test set和最终应用不符。改进的办法就是,要么可以多采用一些真实的用户数据,或者采用data augmentation来人工添加噪声,让原本清晰的图片变成模糊的。总而言之,就是改进训练集和测试开发集再进行训练。

如果有特别不想要的指标怎么办?

比如cat detector会误将色情图片识别为猫咪,这个是不可接受的,不管模型精度有多高。解决方法就是修改metric:
Error:
if is non-porn, if is porn.

最终的优化方向

为什么以人类表现作为分水岭?

因为人类在自然感知(Natural Perception)方面已经很擅长了。而在模型未达到人类表现的时候,你可以通过各种工具来改善你的学习模型。但当模型达到或者超过人类表现的时候,这些工具就失效了。因为这些工具也是通过人类感知来制造的。

什么是Avoidable Bias?

  • 通常用人类表现来近似贝叶斯最优误差。
  • If | human-level error - training error | | training error - development error |, focus on bias (avoidable bias) reduction technique
  • If | human-level error - training error | | training error - development error |, focus on variance reduction technique

超过人类表现后怎么办?

答案是,没办法或者没有好的办法。因为超过人类表现,所有的改善模型表现的工具可能都会失效。所以要想前进一步都很困难。Andrew在教程中也没有给出明确的方向应该怎么做。我们通常用人类表现来近似贝叶斯最佳误差。当模型表现已经超过一组人类的推断准确率的时候,就没办法再用原先的值来近似贝叶斯误差了。

总结

%23%20Deep%20Learning%20%287%29%20-%20Machine%20Learning%20Strategy%0A@%28myblog%29%5Bdeep%20learning%2C%20machine%20learning%5D%0A%0A%u6240%u8C13Machine%20Learning%20Strategy%u5C31%u662F%u5982%u4F55%u8C03%u6574%u5B66%u4E60%u7684%u7B56%u7565%uFF0C%u6765%u8FBE%u5230%u66F4%u597D%u7684%u51C6%u786E%u7387%u3002Andrew%u63D0%u5230%u8FD9%u4E00%u95E8%u8BFE%28Structuring%20Machine%20Learning%20Projects%29%u7684%u4E24%u5468%u7684%u5185%u5BB9%uFF0C%u901A%u5E38%u662F%u4E00%u4E9B%u673A%u5668%u5B66%u4E60%u9879%u76EE%u7684%u7ECF%u9A8C%u4E4B%u8C08%uFF0C%u5728%u5B66%u6821%u7684%u8BFE%u7A0B%u4E2D%u901A%u5E38%u4E0D%u4F1A%u6709%u63D0%u53CA%u3002%0A%0A%23%23%20Orthogonalization%20%0AOrthogonalization%uFF0C%u8BD1%u4F5C%u6B63%u4EA4%u5316%uFF0C%u7C7B%u4F3Ccoding%u65F6%u5019%u7684%u89E3%u8026%28decouple%29%u3002%u901A%u8FC7%u4E00%u4E9B%u6B63%u4EA4%u5316%u7684%u8C03%u6574%u7B56%u7565%u6765%u4FEE%u6B63%u76F8%u5173%u6761%u4EF6%u4E0B%u7684%u6A21%u578B%u51C6%u786E%u7387%u3002%u4E00%u822C%u6709%u4E0B%u97624%u4E2D%u7B56%u7565%uFF1A%0A%3EWhen%20a%20supervised%20learning%20system%20is%20design%2C%20these%20are%20the%204%20assumptions%20that%20needs%20to%20be%20true%20and%20orthogonal.%0A1.%20Fit%20training%20set%20well%20in%20cost%20function%0A-%20If%20it%20doesn%u2019t%20fit%20well%2C%20the%20use%20of%20a%20bigger%20neural%20network%20or%20switching%20to%20a%20better%20optimization%20algorithm%20might%20help.%0A2.%20Fit%20development%20set%20well%20on%20cost%20function%0A-%20If%20it%20doesn%u2019t%20fit%20well%2C%20regularization%20or%20using%20bigger%20training%20set%20might%20help.%0A3.%20Fit%20test%20set%20well%20on%20cost%20function%0A-%20If%20it%20doesn%u2019t%20fit%20well%2C%20the%20use%20of%20a%20bigger%20development%20set%20might%20help%0A4.%20Performs%20well%20in%20real%20world%0A-%20If%20it%20doesn%u2019t%20perform%20well%2C%20the%20development%20test%20set%20is%20not%20set%20correctly%20or%20the%20cost%20function%20is%20not%20evaluating%20the%20right%20thing.%0A%0AAndrew%u4E5F%u63D0%u5230%u4E4B%u524D%u63D0%u5230%u7684%u4E00%u79CDregularization%u7684%u65B9%u6CD5%u2014%u2014early%20stopping%uFF0C%u5C31%u4E0D%u662F%u4E00%u79CD%u6B63%u4EA4%u5316%u7684%u8C03%u6574%u7B56%u7565%u3002%u4ED6%u540C%u65F6%u60F3%u505A%u597D%u7B2C1%u548C%u7B2C2%u70B9%u3002%0A%0A%23%23%20Setting%20up%20your%20goal%0A%u505A%u4E00%u4E2A%u673A%u5668%u5B66%u4E60%u7684%u9879%u76EE%uFF0C%u901A%u5E38%u662F%u4E0B%u9762%u8FD9%u4E2A%u8FC7%u7A0B%uFF0CIdea-%3ECode-%3EExperiment-%3EIdea%uFF0C%u4E0D%u65AD%u7684%u8FED%u4EE3%u5F97%u5230%u6700%u7EC8%u4F18%u5316%u7684%u6A21%u578B%u3002%0A%21%5BAlt%20text%7C350x0%5D%28./1535881797306.png%29%0A%u8FD9%u91CC%u7684Experiment%u4E5F%u5C31%u76F8%u5F53%u4E8E%u6D4B%u8BD5%uFF0C%u901A%u8FC7%u6D4B%u8BD5%u7684%u7ED3%u679C%u662F%u597D%u662F%u574F%uFF0C%u6765%u51B3%u5B9A%u4E0B%u4E00%u6B65%u600E%u4E48%u8C03%u6574%u6A21%u578B%u3002%u6240%u4EE5%u6D4B%u8BD5%u7ED3%u679C%u7684%u8BC4%u4F30%u5C31%u975E%u5E38%u91CD%u8981%u4E86%u3002%u8FD9%u4E00%u7AE0%20%u63D0%u5230%u7684%u51E0%u4E2A%u6280%u5DE7%u90FD%u662F%u5173%u4E8E%u6D4B%u8BD5%u7ED3%u679C%u7684%u8BC4%u4F30%u3002%0A%23%23%23%20Single%20real%20number%20evaluation%20metric%0A%u5982%u679C%u9488%u5BF9%u4E00%u4E2A%u6D4B%u8BD5%u6709%u4E24%u4E2A%u6307%u6570%u578B%u6307%u6807%uFF0C%u8FD9%u5C31%u5F88%u96BE%u53D6%u820D%u3002%u8FD9%u4F1A%u964D%u4F4E%u4E0A%u9762%u8FD9%u4E2A%u5FAA%u73AF%u7684%u6548%u7387%uFF0C%u751A%u81F3%u6700%u7EC8%u7684%u6A21%u578B%u51C6%u786E%u5EA6%u3002%u6240%u4EE5%u8FD9%u91CC%u624D%u4F1A%u63D0%u51FA%u5355%u4E00%u8BC4%u4EF7%u6807%u51C6%u3002%u4F8B%u5982%u4E0B%u9762%u7684%u4F8B%u5B50%uFF1A%0A%21%5BAlt%20text%7C350x0%5D%28./1535927323926.png%29%0A%3E%20Precision%3A%20Of%20all%20the%20images%20we%20predicted%20y%3D1%2C%20what%20fraction%20of%20it%20have%20cats%3F%0A%3E%20Recall%3A%20Of%20all%20the%20images%20that%20actually%20have%20cats%2C%20what%20fraction%20of%20it%20did%20we%20correctly%20identifying%20have%20cats%3F%0A%0A%u8FD9%u4E24%u4E2A%u6307%u6807%u5F53%u7136%u90FD%u662F%u8D8A%u5927%u8D8A%u597D%uFF0C%u90A3%u5982%u4F55%u8BC4%u5B9AClassifier%20A%u548CB%uFF1F%0A%u4E4B%u524D%u7684%u4E00%u7BC7%u535A%u6587%5BMachine%20Learning%20%282%29%20-%20Neural%20Network%5D%28https%3A//zhougy0717.github.io/2017/04/03/Machine%2520Learning%2520%282%29%2520-%2520Neural%2520Network/%29%u4E2D%u5173%u4E8E%5Bskewed%20data%u7684%u4E00%u8282%5D%28https%3A//zhougy0717.github.io/2017/04/03/Machine%2520Learning%2520%282%29%2520-%2520Neural%2520Network/%23x7279x4f8bskewed-data%29%u4E2D%uFF0C%u6709%u63D0%u5230F1-score%u3002%u8FD9%u91CC%u5C31%u662F%u901A%u8FC7F1-score%u6765%u6574%u5408precision%u548Crecall%u6765%u5F97%u5230%u4E00%u4E2A%u7EDF%u4E00%u7684%u6807%u51C6%u3002%0AF1-score%24%20%3D%20%5Cfrac%20%7B2%7D%7B%5Cfrac%7B1%7D%7BP%7D%20+%20%5Cfrac%7B1%7D%7BR%7D%7D%24%0A%u8FD9%u4E2A%u7B97%u6CD5%u53C8%u79F0%u4E3A%22Harmonic%20Mean%22%u3002%0A%0A%u8BA1%u7B97Precision%u548CRecall%u7684%u201D%u5747%u503C%u201C%u53EA%u662F%u4E00%u4E2A%u4F8B%u5B50%uFF0C%u901A%u5E38%u6211%u4EEC%u8981%u81EA%u5DF1%u601D%u8003%u51FA%u5982%u4F55%u80FD%u4EA7%u751F%u4E00%u4E2A%u6613%u4E8E%u8BC4%u4F30%u7684%u5355%u4E00%u6307%u6570%u6807%u51C6%u3002%0A%0A%23%23%23%20Satisficing%20and%20Optimizing%0A%u8FD9%u91CC%u6307%uFF0C%u68C0%u9A8C%u8BD5%u9A8C%u7ED3%u679C%u7684%u6307%u6807%uFF0C%u901A%u5E38%u53EF%u4EE5%u5206%u6210%u4E24%u7C7B%uFF0C%u5373Satisficing%u548COptimizing%u3002%0ASatisficing%u7C7B%u6307%u6807%u6307%u7684%u662F%u53EA%u8981%u8FBE%u5230%u4E00%u5B9A%u7684%u9608%u503C%uFF0C%u518D%u4F18%u5316%u4E5F%u4E0D%u592A%u4F1A%u5F71%u54CD%u8BD5%u9A8C%u7ED3%u679C%u7684%u4F18%u52A3%u3002%u4F8B%u5982%uFF0C%u8FD0%u884C%u65F6%u95F4%u8FBE%u5230100ms%u5373%u53EF%uFF0C80ms%u548C90ms%u7684%u8FD0%u884C%u65F6%u95F4%u5DEE%u522B%uFF0C%u5E76%u4E0D%u80FD%u5E26%u6765%u4EC0%u4E48%u6539%u5584%u3002%0AOptimizing%u7C7B%u6307%u6807%u6307%u7684%u5C31%u662F%u4E00%u4E9B%u6570%u503C%u7C7B%u7684%u6307%u6807%uFF0C%u4F8B%u5982%u51C6%u786E%u7387%uFF0C%u4E00%u70B9%u70B9%u6539%u5584%u90FD%u4F1A%u5F71%u54CD%u8BD5%u9A8C%u7ED3%u679C%u7684%u8BC4%u5224%u3002%0A%u4E0B%u9762%u662F%u4E00%u4E2A%u5177%u4F53%u7684%u4F8B%u5B50%uFF1A%0A%21%5BAlt%20text%7C350x0%5D%28./1535928500755.png%29%0A%u8FD9%u4E2A%u4F8B%u5B50%u91CC%uFF0CRunning%20time%u5C31%u662Fsatisficing%u6307%u6807%uFF0CAccuracy%u5C31%u662Foptimizing%u6307%u6807%u3002%0A%0A%23%23%20Train/dev/test%20distributions%0A%u5728%u505A%u673A%u5668%u5B66%u4E60%u9879%u76EE%u65F6%uFF0C%u901A%u5E38%u9700%u8981%u5BF9%u6837%u672C%u6570%u636E%u8FDB%u884C%u5206%u5272%u3002%u800C%u4E0D%u662F%u5C06%u6240%u6709%u7684%u6837%u672C%u90FD%u7528%u4E8E%u8BAD%u7EC3%u3002%u4E0A%u4E00%u7AE0%u63D0%u5230%u8981%u5BF9%u8BD5%u9A8C%u7ED3%u679C%u8FDB%u884C%u8BC4%u4F30%uFF0C%u800C%u8FD9%u4E2A%u8BC4%u4F30%u5C31%u662F%u5728dev%u6216%u8005test%20set%u4E0A%u8FDB%u884C%u7684%u3002%u6240%u4EE5%u6709%u4E00%u4E2A%u5408%u9002%u7684dev/test%20set%u5BF9%u6A21%u578B%u7684%u8FED%u4EE3%u4EE5%u53CA%u9879%u76EE%u7684%u63A8%u8FDB%uFF0C%u6709%u7740%u81F3%u5173%u91CD%u8981%u7684%u5F71%u54CD%u3002%0A%0A%3E%20-%20Training%20set%3A%20%u8FED%u4EE3%u5F97%u5230%u5404%u4E2A%u6A21%u578B%u53C2%u6570%28W%2C%20b%2C%20%24%5Cbeta%24%2C%20%24%5Cgamma%20%5Cdots%24%29%0A%3E%20-%20Development%20%28dev%29%20set%3A%20%u5728%u4E00%u8F6E%u5FAA%u73AF%u4E2D%u9A8C%u8BC1training%u7ED3%u679C%u7684%u6B63%u786E%u6027%uFF0C%u4EE5%u4FBF%u4E0B%u4E00%u8F6E%u8C03%u6574%u6A21%u578B%28%u5305%u62EC%u8D85%u53C2%u6570%u7684%u8C03%u6574%uFF0C%u662F%u5426%u91C7%u7528%u6B63%u5219%u5316%uFF0C%u7F51%u7EDC%u7ED3%u6784%u7684%u8C03%u6574%u7B49%u7B49%29%0A%3E%20-%20Test%20set%3A%20%u5728%u6240%u6709%u5FAA%u73AF%u7ED3%u675F%u540E%uFF0C%u6765%u9A8C%u8BC1%u6700%u7EC8%u6A21%u578B%u7684%u6B63%u786E%u6027%u3002%0A%0A%23%23%23%20%u5982%u4F55%u5206%u5272%uFF1F%0A%u5728%u6837%u672C%u6570%u636E%u4E0D%u592A%u591A%28%u6570%u5343%u6570%u4E07%u7684%u7EA7%u522B%29%u7684%u65F6%u5019%uFF0C%u4E00%u822C%u5982%u4E0B%u5206%u5272%uFF1A%0A%21%5BAlt%20text%7C400x0%5D%28./1535929236023.png%29%0A%u5F53%u6837%u672C%u8DB3%u591F%u591A%u7684%u65F6%u5019%uFF0C%u4F8B%u5982%u767E%u4E07%u7EA7%uFF0C%u53EF%u4EE5%u5982%u4E0B%u5206%u5272%uFF1A%0A%21%5BAlt%20text%7C400x0%5D%28./1535929370378.png%29%0Adev/test%20set%u7684%u6837%u672C%u53EA%u8981%u80FD%u8FBE%u5230%u6570%u5343%u7684%u7EA7%u522B%u5C31%u8DB3%u591F%u4E86%uFF0C%u518D%u591A%u4E5F%u5E76%u4E0D%u4F1A%u5F97%u5230%u66F4%u597D%u7684%u6548%u679C%u3002%u4E0D%u5982%u5C06%u8FD9%u4E9B%u6837%u672C%u653E%u5165training%u96C6%u3002%0A%0A%23%23%23%20Guide%20Line%0A%21%5BAlt%20text%5D%28./1535930044364.png%29%0A%0A%23%23%23%23%20%u540C%u4E00%u5206%u5E03%0A%u5206%u5272%u6837%u672C%u6570%u636E%u7684%u65F6%u5019%u5FC5%u987B%u4FDD%u8BC1training%uFF0Cdev%uFF0Ctest%20set%u5747%u6765%u81EA%u4E8E%u540C%u4E00%u79CD%u5206%u5E03%u3002%0A%21%5BAlt%20text%7C250x0%5D%28./1535929538718.png%29%0A%u4E0A%u9762%u8FD9%u79CD%u5206%u5272%u5C31%u662F%u9519%u8BEF%u7684%uFF0C%u5C06%u524D4%u4E2A%u56FD%u5BB6%u7684%u6570%u636E%u4F5C%u4E3Adev%20set%uFF0C%u540E%u56DB%u4E2A%u56FD%u5BB6%u6570%u636E%u4F5C%u4E3Atest%20set%u3002%u6B63%u786E%u7684%u505A%u6CD5%u5E94%u5F53%u662F%uFF0C%u5C06%u6240%u6709%u56FD%u5BB6%u7684%u6570%u636E%u5168%u90E8%u6DF7%u7F16%uFF0C%u968F%u673A%u4EA7%u751F%u51FA%u8DB3%u591F%u6570%u91CF%u7684dev%20set%u548Ctest%20set%u3002%0A%0A%23%23%23%23%20%u53CD%u6620%u6700%u7EC8%u5E94%u7528%u573A%u666F%0Adev/test%20set%u5FC5%u987B%u53CD%u5E94%u6700%u7EC8%u6A21%u578B%u7684%u5E94%u7528%u573A%u666F%u3002%0A%u4F8B%u5982cat%20detector%uFF0C%u8BAD%u7EC3%uFF0C%u6D4B%u8BD5%u90FD%u662F%u91C7%u7528%u7F51%u7EDC%u4E0A%u6E05%u6670%u5EA6%u5F88%u9AD8%u7684%u56FE%u7247%uFF0C%u4F46%u4F7F%u7528%u65F6%u53D1%u73B0%u7528%u6237%u4E0A%u4F20%u7684%u5F88%u591A%u90FD%u662F%u6E05%u6670%u5EA6%u4E0D%u9AD8%u7684%u7167%u7247%uFF0C%u90A3%u8BC6%u522B%u7387%u80AF%u5B9A%u662F%u4E0D%u80FD%u4EE4%u4EBA%u6EE1%u610F%u7684%u3002%u8FD9%u5C31%u662Fdev/test%20set%u548C%u6700%u7EC8%u5E94%u7528%u4E0D%u7B26%u3002%u6539%u8FDB%u7684%u529E%u6CD5%u5C31%u662F%uFF0C%u8981%u4E48%u53EF%u4EE5%u591A%u91C7%u7528%u4E00%u4E9B%u771F%u5B9E%u7684%u7528%u6237%u6570%u636E%uFF0C%u6216%u8005%u91C7%u7528data%20augmentation%u6765%u4EBA%u5DE5%u6DFB%u52A0%u566A%u58F0%uFF0C%u8BA9%u539F%u672C%u6E05%u6670%u7684%u56FE%u7247%u53D8%u6210%u6A21%u7CCA%u7684%u3002%u603B%u800C%u8A00%u4E4B%uFF0C%u5C31%u662F%u6539%u8FDB%u8BAD%u7EC3%u96C6%u548C%u6D4B%u8BD5%u5F00%u53D1%u96C6%u518D%u8FDB%u884C%u8BAD%u7EC3%u3002%0A%0A%23%23%23%23%20%u5982%u679C%u6709%u7279%u522B%u4E0D%u60F3%u8981%u7684%u6307%u6807%u600E%u4E48%u529E%uFF1F%0A%u6BD4%u5982cat%20detector%u4F1A%u8BEF%u5C06%u8272%u60C5%u56FE%u7247%u8BC6%u522B%u4E3A%u732B%u54AA%uFF0C%u8FD9%u4E2A%u662F%u4E0D%u53EF%u63A5%u53D7%u7684%uFF0C%u4E0D%u7BA1%u6A21%u578B%u7CBE%u5EA6%u6709%u591A%u9AD8%u3002%u89E3%u51B3%u65B9%u6CD5%u5C31%u662F%u4FEE%u6539metric%uFF1A%0AError%3A%20%24%5Cfrac%20%7B1%7D%7B%5CSigma_i%7Bw%5E%7B%28i%29%7D%7D%7D%20%5CSigma_%7Bi%3D1%7D%5E%7Bm_%7Bdev%7D%7Dw%5E%7B%28i%29%7DI%5C%7By_%7Bpred%7D%5E%7B%28i%29%7D%20%5Cneq%20y%5E%7B%28i%29%7D%5C%7D%24%0A%24w%5E%7B%28i%29%7D%20%3D%201%24%20if%20%24X%5E%7B%28i%29%7D%24%20is%20non-porn%2C%20%24w%5E%7B%28i%29%7D%20%3D%2010%24%20if%20%24X%5E%7B%28i%29%7D%24%20is%20porn.%0A%0A%0A%23%23%20%u6700%u7EC8%u7684%u4F18%u5316%u65B9%u5411%0A%21%5BAlt%20text%7C600x0%5D%28./1535944488653.png%29%0A%u84DD%u8272%u865A%u7EBF%u4EE3%u8868%u4EBA%u7C7B%u7684%u8868%u73B0%uFF0C%u7EFF%u8272%u865A%u7EBF%u4EE3%u8868%u7406%u8BBA%u6781%u9650%uFF0C%u5373Bayes%20Optimal%20Error%28%u8D1D%u53F6%u65AF%u6700%u4F18%u8BEF%u5DEE%29%u3002%u8FD9%u91CC%u63D0%u5230%u7684Bayes%20Optimal%20Error%u662F%u4E00%u4E2A%u7406%u8BBA%u503C%uFF0C%u5B83%u4EE3%u8868%u7740%u901A%u8FC7%u4E00%u5207%u624B%u6BB5%u80FD%u8FBE%u5230%u7684%u6700%u4F18%u72B6%u6001%u3002%0A%u4E0A%u9762%u7684%u66F2%u7EBF%u8868%u793A%uFF0C%u673A%u5668%u5B66%u4E60%u9879%u76EE%u5728%u8FBE%u5230%u4EBA%u7C7B%u6C34%u5E73%u4E4B%u524D%uFF0C%u4F1A%u6709%u4E00%u4E2A%u6BD4%u8F83%u597D%u7684%u6539%u5584%u901F%u7387%uFF0C%u5F53%u8FBE%u5230%u6216%u8D85%u8FC7%u4EBA%u7C7B%u8868%u73B0%u540E%uFF0C%u5373%u8D8B%u4E8E%u5E73%u7F13%uFF0C%u751A%u81F3%u5F88%u96BE%u518D%u6709%u6539%u5584%u7684%u7A7A%u95F4%u3002%0A%0A%23%23%23%20%u4E3A%u4EC0%u4E48%u4EE5%u4EBA%u7C7B%u8868%u73B0%u4F5C%u4E3A%u5206%u6C34%u5CAD%uFF1F%0A%u56E0%u4E3A%u4EBA%u7C7B%u5728%u81EA%u7136%u611F%u77E5%28Natural%20Perception%29%u65B9%u9762%u5DF2%u7ECF%u5F88%u64C5%u957F%u4E86%u3002%u800C%u5728%u6A21%u578B%u672A%u8FBE%u5230%u4EBA%u7C7B%u8868%u73B0%u7684%u65F6%u5019%uFF0C%u4F60%u53EF%u4EE5%u901A%u8FC7%u5404%u79CD%u5DE5%u5177%u6765%u6539%u5584%u4F60%u7684%u5B66%u4E60%u6A21%u578B%u3002%u4F46%u5F53%u6A21%u578B%u8FBE%u5230%u6216%u8005%u8D85%u8FC7%u4EBA%u7C7B%u8868%u73B0%u7684%u65F6%u5019%uFF0C%u8FD9%u4E9B%u5DE5%u5177%u5C31%u5931%u6548%u4E86%u3002%u56E0%u4E3A%u8FD9%u4E9B%u5DE5%u5177%u4E5F%u662F%u901A%u8FC7%u4EBA%u7C7B%u611F%u77E5%u6765%u5236%u9020%u7684%u3002%0A%0A%20%0A%23%23%23%20%u4EC0%u4E48%u662FAvoidable%20Bias%uFF1F%0A%21%5BAlt%20text%7C500x0%5D%28./1535951043543.png%29%0AAvoidable%20Bias%20%3D%20Bayes%20Error%20-%20Training%20Error%0A-%20%u901A%u5E38%u7528%u4EBA%u7C7B%u8868%u73B0%u6765%u8FD1%u4F3C%u8D1D%u53F6%u65AF%u6700%u4F18%u8BEF%u5DEE%u3002%0A-%20If%20%7C%20human-level%20error%20-%20training%20error%20%7C%20%24%5Cge%24%20%7C%20training%20error%20-%20development%20error%20%7C%2C%20focus%20on%20**bias%20%28avoidable%20bias%29**%20reduction%20technique%0A-%20If%20%20%7C%20human-level%20error%20-%20training%20error%20%7C%20%24%5Cle%24%20%7C%20training%20error%20-%20development%20error%20%7C%2C%20focus%20on%20**variance**%20reduction%20technique%0A%0A%0A%23%23%23%20%u8D85%u8FC7%u4EBA%u7C7B%u8868%u73B0%u540E%u600E%u4E48%u529E%uFF1F%0A%u7B54%u6848%u662F%uFF0C%u6CA1%u529E%u6CD5%u6216%u8005%u6CA1%u6709%u597D%u7684%u529E%u6CD5%u3002%u56E0%u4E3A%u8D85%u8FC7%u4EBA%u7C7B%u8868%u73B0%uFF0C%u6240%u6709%u7684%u6539%u5584%u6A21%u578B%u8868%u73B0%u7684%u5DE5%u5177%u53EF%u80FD%u90FD%u4F1A%u5931%u6548%u3002%u6240%u4EE5%u8981%u60F3%u524D%u8FDB%u4E00%u6B65%u90FD%u5F88%u56F0%u96BE%u3002Andrew%u5728%u6559%u7A0B%u4E2D%u4E5F%u6CA1%u6709%u7ED9%u51FA%u660E%u786E%u7684%u65B9%u5411%u5E94%u8BE5%u600E%u4E48%u505A%u3002%u6211%u4EEC%u901A%u5E38%u7528%u4EBA%u7C7B%u8868%u73B0%u6765%u8FD1%u4F3C%u8D1D%u53F6%u65AF%u6700%u4F73%u8BEF%u5DEE%u3002%u5F53%u6A21%u578B%u8868%u73B0%u5DF2%u7ECF%u8D85%u8FC7%u4E00%u7EC4%u4EBA%u7C7B%u7684%u63A8%u65AD%u51C6%u786E%u7387%u7684%u65F6%u5019%uFF0C%u5C31%u6CA1%u529E%u6CD5%u518D%u7528%u539F%u5148%u7684%u503C%u6765%u8FD1%u4F3C%u8D1D%u53F6%u65AF%u8BEF%u5DEE%u4E86%u3002%0A%0A%23%23%20%u603B%u7ED3%0A%21%5BAlt%20text%7C700x0%5D%28./1535959208924.png%29%0A