Deep Learning (11) - Deep convolutional models

Edit

终于讲到真正的deep learning了,本章主要介绍了几个经典的深度卷积网络。包括:

  • Classic Networks:
    • LeNet-5
    • AlexNet
    • VGG
  • ResNet
  • Inception

经典网络都是比较早期的运用卷积层搭建的神经网络,在当时取得了不错的效果,也推动了深度学习社区的进一步发展。这些网络的构成也可以帮助我们学习如何搭建深度卷积网络。ResNet和Inception就是最近几年的研究成果了。由于现在深度学习理论和计算机算力的进一步发展,这些网络的结构已经远比经典网络要复杂的多。我们可以通过学习了解,并在真正的生产环境中去尝试使用这些已有的网络。
所有的网络都有对应的论文介绍,我将其列入参考文献一节。

经典网络

这些经典网络基本都基于经典的卷积网络(LeNet),只是网络的尺寸越来越大,参数越来越多

LeNet-5

上一章讲卷积网络时就以这个网络为例子的。其基本构成如下图:

  • 两个卷积层,每一个卷积层后有一个average pooling层
  • 最后两个神经网络层直接输出
  • 在输出前可以用Softmax层来做多分类
  • 该网络大约有60K个参数

因为是早期网络,所以并不是很深,卷积层没有使用padding,所以图像尺寸越来越小,采用average pooling,这在后期的网络不太常见。
不过不管怎么样,这都是一个很经典的卷积神经网络。

AlexNet

其网络结构如下图:


网络构成基本与LeNet差不多。与LeNet不同的是,这里采用了max pooling,采用了更多的神经网络连接,添加了Softmax输出层,一定程度上使用了padding。参数的数量大约在60M,是LeNet的1000倍。

产生这篇论文时,GPU技术还不是很发达,论文花了很多篇幅讲述如何将改网络拆分到不同的GPU上进行计算。但这个对现在的GPU技术来说已经不重要了。
文中还提到了一个概念叫Local Response Normalization,这也是不常用的概念,不需要理解。

VGG - 16

网络结构如下图:


网络结构变的更复杂了,参数数量达到了138M

ResNet

中文译作残差网络,因为其特点是在经典网络的基础上加入很多如下图的residual block:




<——- 这里的就是残差

整个网络结构大致如下:


这样一个网络就由5个残差模块组成。
残差模块的引入是为了改善,当经典网络(或者这篇论文中提到的plain network,即没有残差模块的网络)深度很大时的vulnerability,即梯度爆炸和梯度消失带来的问题。


理论上机器学习的网络规模越大,深度越大的时候,精度应该越来越高。但因为初始值取值的问题,或其他任何随机误差的引入,都有可能在网络层数过多时会导致梯度消失或爆炸,从而导致实际效果达不到理论效果。
在引入残差网络解决梯度消失或爆炸后,往往能得到比较好的效果:

为什么残差网络有用?(注:这里我也不太理解,先记录下来)

对于这样一个大型神经网络后面接一个残差模块后,有:

如果有weight decay(L2 regularization),,如果当的时候,,如果激活函数时ReLU,则,可见新增加的两层神经网络并不会影响整体网络的performance。所以得证,网络深度的累积对残差网络的影响较小。

Inception

Network in network (1x1 convolution)


这里是一个filter的图例。与其他的卷积网络不同的是,这里不仅是,而是均是向量。如果filter有很多个,则相当于一个小型2层(1个隐藏层)的神经网络。这就是所谓的网络中的网络。
使用1x1 convolution或者network in network的好处是,可以缩减输入图像的通道数。从而达到减少运算量的效果。

运用Network in network来降低运算量


这样一次映射的运算量是28x28x192x5x5x32 = 120M


通过一个1x1convolution做过度的计算量是28x28x192x1x1x16 + 28x28x16x5x5x32 = 12.4M
缩小到接近1/10,相当可观了。而且因为network in network的引入,虽然通道数缩减了,但并不会影响最终模型的performance。
中间的1x1 convolution又称为该网络的bottle neck,很形象的比喻

Inception (GoogLeNet)


这就是一个完整的Inception网络,里面包含了很多如下的Inception Module:


带branch的Inception网络


每个分支都有一个Softmax输出层。这些分支也能输出预测值,这样确保网络的所有隐藏单元和中间层都参与了特征计算。按照Andrew的说法,这些分支可以起到regularization的作用,可以有效降低网络过拟合的可能性。

参考文献

  • LeNet-5: LeCun et al., 1998. Gradient-based learning applied to document recognition
  • AlexNet: Krizhevsky et al., 2012. ImageNet classification with deep convolutional nerual networks
  • VGG-16: Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition
  • ResNet: He et al., 2015. Deep residual networks for image recognition
  • Network in network: Lin. et al., 2013. Network in network
  • Inception: Szegedy et al., 2014, Going Deeper with Convolutions
%23%20Deep%20Learning%20%2811%29%20-%20%20Deep%20convolutional%20models%0A@%28myblog%29%5Bmachine%20learning%2C%20deep%20learning%5D%0A%0A%u7EC8%u4E8E%u8BB2%u5230%u771F%u6B63%u7684deep%20learning%u4E86%uFF0C%u672C%u7AE0%u4E3B%u8981%u4ECB%u7ECD%u4E86%u51E0%u4E2A%u7ECF%u5178%u7684%u6DF1%u5EA6%u5377%u79EF%u7F51%u7EDC%u3002%u5305%u62EC%uFF1A%0A-%20Classic%20Networks%3A%0A%09-%20LeNet-5%0A%09-%20AlexNet%0A%09-%20VGG%0A-%20ResNet%0A-%20Inception%0A%0A%u7ECF%u5178%u7F51%u7EDC%u90FD%u662F%u6BD4%u8F83%u65E9%u671F%u7684%u8FD0%u7528%u5377%u79EF%u5C42%u642D%u5EFA%u7684%u795E%u7ECF%u7F51%u7EDC%uFF0C%u5728%u5F53%u65F6%u53D6%u5F97%u4E86%u4E0D%u9519%u7684%u6548%u679C%uFF0C%u4E5F%u63A8%u52A8%u4E86%u6DF1%u5EA6%u5B66%u4E60%u793E%u533A%u7684%u8FDB%u4E00%u6B65%u53D1%u5C55%u3002%u8FD9%u4E9B%u7F51%u7EDC%u7684%u6784%u6210%u4E5F%u53EF%u4EE5%u5E2E%u52A9%u6211%u4EEC%u5B66%u4E60%u5982%u4F55%u642D%u5EFA%u6DF1%u5EA6%u5377%u79EF%u7F51%u7EDC%u3002ResNet%u548CInception%u5C31%u662F%u6700%u8FD1%u51E0%u5E74%u7684%u7814%u7A76%u6210%u679C%u4E86%u3002%u7531%u4E8E%u73B0%u5728%u6DF1%u5EA6%u5B66%u4E60%u7406%u8BBA%u548C%u8BA1%u7B97%u673A%u7B97%u529B%u7684%u8FDB%u4E00%u6B65%u53D1%u5C55%uFF0C%u8FD9%u4E9B%u7F51%u7EDC%u7684%u7ED3%u6784%u5DF2%u7ECF%u8FDC%u6BD4%u7ECF%u5178%u7F51%u7EDC%u8981%u590D%u6742%u7684%u591A%u3002%u6211%u4EEC%u53EF%u4EE5%u901A%u8FC7%u5B66%u4E60%u4E86%u89E3%uFF0C%u5E76%u5728%u771F%u6B63%u7684%u751F%u4EA7%u73AF%u5883%u4E2D%u53BB%u5C1D%u8BD5%u4F7F%u7528%u8FD9%u4E9B%u5DF2%u6709%u7684%u7F51%u7EDC%u3002%0A%u6240%u6709%u7684%u7F51%u7EDC%u90FD%u6709%u5BF9%u5E94%u7684%u8BBA%u6587%u4ECB%u7ECD%uFF0C%u6211%u5C06%u5176%u5217%u5165%u53C2%u8003%u6587%u732E%u4E00%u8282%u3002%0A%23%23%20%u7ECF%u5178%u7F51%u7EDC%0A%u8FD9%u4E9B%u7ECF%u5178%u7F51%u7EDC%u57FA%u672C%u90FD%u57FA%u4E8E%u7ECF%u5178%u7684%u5377%u79EF%u7F51%u7EDC%28LeNet%29%uFF0C%u53EA%u662F%u7F51%u7EDC%u7684%u5C3A%u5BF8%u8D8A%u6765%u8D8A%u5927%uFF0C%u53C2%u6570%u8D8A%u6765%u8D8A%u591A%0A%23%23%23%20LeNet-5%0A%u4E0A%u4E00%u7AE0%u8BB2%u5377%u79EF%u7F51%u7EDC%u65F6%u5C31%u4EE5%u8FD9%u4E2A%u7F51%u7EDC%u4E3A%u4F8B%u5B50%u7684%u3002%u5176%u57FA%u672C%u6784%u6210%u5982%u4E0B%u56FE%uFF1A%0A%21%5BAlt%20text%5D%28./1537397452563.png%29%0A-%20%u4E24%u4E2A%u5377%u79EF%u5C42%uFF0C%u6BCF%u4E00%u4E2A%u5377%u79EF%u5C42%u540E%u6709%u4E00%u4E2Aaverage%20pooling%u5C42%0A-%20%u6700%u540E%u4E24%u4E2A%u795E%u7ECF%u7F51%u7EDC%u5C42%u76F4%u63A5%u8F93%u51FA%0A-%20%u5728%u8F93%u51FA%u524D%u53EF%u4EE5%u7528Softmax%u5C42%u6765%u505A%u591A%u5206%u7C7B%0A-%20%u8BE5%u7F51%u7EDC%u5927%u7EA6%u670960K%u4E2A%u53C2%u6570%0A%0A%u56E0%u4E3A%u662F%u65E9%u671F%u7F51%u7EDC%uFF0C%u6240%u4EE5%u5E76%u4E0D%u662F%u5F88%u6DF1%uFF0C%u5377%u79EF%u5C42%u6CA1%u6709%u4F7F%u7528padding%uFF0C%u6240%u4EE5%u56FE%u50CF%u5C3A%u5BF8%u8D8A%u6765%u8D8A%u5C0F%uFF0C%u91C7%u7528average%20pooling%uFF0C%u8FD9%u5728%u540E%u671F%u7684%u7F51%u7EDC%u4E0D%u592A%u5E38%u89C1%u3002%0A%u4E0D%u8FC7%u4E0D%u7BA1%u600E%u4E48%u6837%uFF0C%u8FD9%u90FD%u662F%u4E00%u4E2A%u5F88%u7ECF%u5178%u7684%u5377%u79EF%u795E%u7ECF%u7F51%u7EDC%u3002%0A%0A%23%23%23%20AlexNet%0A%u5176%u7F51%u7EDC%u7ED3%u6784%u5982%u4E0B%u56FE%uFF1A%0A%21%5BAlt%20text%5D%28./1537397767249.png%29%0A%u7F51%u7EDC%u6784%u6210%u57FA%u672C%u4E0ELeNet%u5DEE%u4E0D%u591A%u3002%u4E0ELeNet%u4E0D%u540C%u7684%u662F%uFF0C%u8FD9%u91CC%u91C7%u7528%u4E86max%20pooling%uFF0C%u91C7%u7528%u4E86%u66F4%u591A%u7684%u795E%u7ECF%u7F51%u7EDC%u8FDE%u63A5%uFF0C%u6DFB%u52A0%u4E86Softmax%u8F93%u51FA%u5C42%uFF0C%u4E00%u5B9A%u7A0B%u5EA6%u4E0A%u4F7F%u7528%u4E86padding%u3002%u53C2%u6570%u7684%u6570%u91CF%u5927%u7EA6%u572860M%uFF0C%u662FLeNet%u76841000%u500D%u3002%0A%3E%20%u4EA7%u751F%u8FD9%u7BC7%u8BBA%u6587%u65F6%uFF0CGPU%u6280%u672F%u8FD8%u4E0D%u662F%u5F88%u53D1%u8FBE%uFF0C%u8BBA%u6587%u82B1%u4E86%u5F88%u591A%u7BC7%u5E45%u8BB2%u8FF0%u5982%u4F55%u5C06%u6539%u7F51%u7EDC%u62C6%u5206%u5230%u4E0D%u540C%u7684GPU%u4E0A%u8FDB%u884C%u8BA1%u7B97%u3002%u4F46%u8FD9%u4E2A%u5BF9%u73B0%u5728%u7684GPU%u6280%u672F%u6765%u8BF4%u5DF2%u7ECF%u4E0D%u91CD%u8981%u4E86%u3002%0A%3E%20%u6587%u4E2D%u8FD8%u63D0%u5230%u4E86%u4E00%u4E2A%u6982%u5FF5%u53EBLocal%20Response%20Normalization%uFF0C%u8FD9%u4E5F%u662F%u4E0D%u5E38%u7528%u7684%u6982%u5FF5%uFF0C%u4E0D%u9700%u8981%u7406%u89E3%u3002%0A%23%23%23%20VGG%20-%2016%0A%u7F51%u7EDC%u7ED3%u6784%u5982%u4E0B%u56FE%uFF1A%0A%21%5BAlt%20text%5D%28./1537398631763.png%29%0A%u7F51%u7EDC%u7ED3%u6784%u53D8%u7684%u66F4%u590D%u6742%u4E86%uFF0C%u53C2%u6570%u6570%u91CF%u8FBE%u5230%u4E86138M%0A%0A%23%23%20ResNet%0A%u4E2D%u6587%u8BD1%u4F5C%u6B8B%u5DEE%u7F51%u7EDC%uFF0C%u56E0%u4E3A%u5176%u7279%u70B9%u662F%u5728%u7ECF%u5178%u7F51%u7EDC%u7684%u57FA%u7840%u4E0A%u52A0%u5165%u5F88%u591A%u5982%u4E0B%u56FE%u7684residual%20block%uFF1A%0A%21%5BAlt%20text%7C300x0%5D%28./1537480856087.png%29%0A%24z%5E%7B%5Bl+1%5D%7D%20%3D%20W%5E%7B%5Bl+1%5D%7Da%5E%7B%5Bl%5D%7D%20+%20b%5E%7B%5Bl+1%5D%7D%24%0A%24a%5E%7B%5Bl+1%5D%7D%20%3D%20g%28z%5E%7B%5Bl+1%5D%7D%29%24%0A%24z%5E%7B%5Bl+2%5D%7D%20%3D%20W%5E%7B%5Bl+2%5D%7Da%5E%7B%5Bl+1%5D%7D%20+%20b%5E%7B%5Bl+2%5D%7D%20+%20a%5E%7B%5Bl%5D%7D%24%20%3C-------%20%u8FD9%u91CC%u7684%24a%5E%7B%5Bl%5D%7D%24%u5C31%u662F%u6B8B%u5DEE%0A%24a%5E%7B%5Bl+2%5D%7D%20%3D%20g%28z%5E%7B%5Bl+2%5D%7D%29%24%0A%0A%u6574%u4E2A%u7F51%u7EDC%u7ED3%u6784%u5927%u81F4%u5982%u4E0B%uFF1A%0A%21%5BAlt%20text%5D%28./1537481112346.png%29%0A%u8FD9%u6837%u4E00%u4E2A%u7F51%u7EDC%u5C31%u75315%u4E2A%u6B8B%u5DEE%u6A21%u5757%u7EC4%u6210%u3002%0A%u6B8B%u5DEE%u6A21%u5757%u7684%u5F15%u5165%u662F%u4E3A%u4E86%u6539%u5584%uFF0C%u5F53%u7ECF%u5178%u7F51%u7EDC%28%u6216%u8005%u8FD9%u7BC7%u8BBA%u6587%u4E2D%u63D0%u5230%u7684plain%20network%uFF0C%u5373%u6CA1%u6709%u6B8B%u5DEE%u6A21%u5757%u7684%u7F51%u7EDC%29%u6DF1%u5EA6%u5F88%u5927%u65F6%u7684vulnerability%uFF0C%u5373%u68AF%u5EA6%u7206%u70B8%u548C%u68AF%u5EA6%u6D88%u5931%u5E26%u6765%u7684%u95EE%u9898%u3002%0A%21%5BAlt%20text%5D%28./1537481278978.png%29%0A%u7406%u8BBA%u4E0A%u673A%u5668%u5B66%u4E60%u7684%u7F51%u7EDC%u89C4%u6A21%u8D8A%u5927%uFF0C%u6DF1%u5EA6%u8D8A%u5927%u7684%u65F6%u5019%uFF0C%u7CBE%u5EA6%u5E94%u8BE5%u8D8A%u6765%u8D8A%u9AD8%u3002%u4F46%u56E0%u4E3A%u521D%u59CB%u503C%u53D6%u503C%u7684%u95EE%u9898%uFF0C%u6216%u5176%u4ED6%u4EFB%u4F55%u968F%u673A%u8BEF%u5DEE%u7684%u5F15%u5165%uFF0C%u90FD%u6709%u53EF%u80FD%u5728%u7F51%u7EDC%u5C42%u6570%u8FC7%u591A%u65F6%u4F1A%u5BFC%u81F4%u68AF%u5EA6%u6D88%u5931%u6216%u7206%u70B8%uFF0C%u4ECE%u800C%u5BFC%u81F4%u5B9E%u9645%u6548%u679C%u8FBE%u4E0D%u5230%u7406%u8BBA%u6548%u679C%u3002%0A%u5728%u5F15%u5165%u6B8B%u5DEE%u7F51%u7EDC%u89E3%u51B3%u68AF%u5EA6%u6D88%u5931%u6216%u7206%u70B8%u540E%uFF0C%u5F80%u5F80%u80FD%u5F97%u5230%u6BD4%u8F83%u597D%u7684%u6548%u679C%uFF1A%0A%21%5BAlt%20text%5D%28./1537481430062.png%29%0A%0A%3E%u4E3A%u4EC0%u4E48%u6B8B%u5DEE%u7F51%u7EDC%u6709%u7528%uFF1F%28**%u6CE8%uFF1A**%u8FD9%u91CC%u6211%u4E5F%u4E0D%u592A%u7406%u89E3%uFF0C%u5148%u8BB0%u5F55%u4E0B%u6765%29%0A%3E%21%5BAlt%20text%7C500x0%5D%28./1537483365846.png%29%0A%3E%u5BF9%u4E8E%u8FD9%u6837%u4E00%u4E2A%u5927%u578B%u795E%u7ECF%u7F51%u7EDC%u540E%u9762%u63A5%u4E00%u4E2A%u6B8B%u5DEE%u6A21%u5757%u540E%uFF0C%u6709%uFF1A%0A%24a%5E%7B%5Bl+2%5D%7D%20%3D%20g%28W%5E%7B%5Bl+2%5D%7Da%5E%7B%5Bl+1%5D%7D%20+%20b%5E%7B%5Bl+2%5D%7D%20+%20a%5E%7B%5Bl%5D%7D%29%24%0A%u5982%u679C%u6709weight%20decay%28L2%20regularization%29%uFF0C%24W%5Crightarrow0%2C%20b%5Crightarrow%200%24%uFF0C%u5982%u679C%u5F53%24W%20%3D%200%2C%20b%20%3D%200%24%u7684%u65F6%u5019%uFF0C%24a%5E%7B%5Bl+2%5D%7D%20%3D%20g%28a%5E%7B%5Bl%5D%7D%29%24%uFF0C%u5982%u679C%u6FC0%u6D3B%u51FD%u6570%u65F6ReLU%uFF0C%u5219%24a%5E%7B%5Bl+2%5D%7D%20%3D%20a%5E%7B%5Bl%5D%7D%24%uFF0C%u53EF%u89C1%u65B0%u589E%u52A0%u7684%u4E24%u5C42%u795E%u7ECF%u7F51%u7EDC%u5E76%u4E0D%u4F1A%u5F71%u54CD%u6574%u4F53%u7F51%u7EDC%u7684performance%u3002%u6240%u4EE5%u5F97%u8BC1%uFF0C%u7F51%u7EDC%u6DF1%u5EA6%u7684%u7D2F%u79EF%u5BF9%u6B8B%u5DEE%u7F51%u7EDC%u7684%u5F71%u54CD%u8F83%u5C0F%u3002%0A%0A%0A%23%23%20Inception%0A%23%23%23%20Network%20in%20network%20%281x1%20convolution%29%0A%21%5BAlt%20text%5D%28./1537484677052.png%29%0A%u8FD9%u91CC%u662F%u4E00%u4E2Afilter%u7684%u56FE%u4F8B%u3002%u4E0E%u5176%u4ED6%u7684%u5377%u79EF%u7F51%u7EDC%u4E0D%u540C%u7684%u662F%uFF0C%u8FD9%u91CC%u4E0D%u4EC5%u662F%24%286%5Ctimes6%5Ctimes32%29%20%5Cast%20%281%5Ctimes1%5Ctimes32%29%24%uFF0C%u800C%u662F%24a_%7Bi%2Cj%7D%5E%7B%5Bl+1%5D%7D%20%3D%20g%28W%5E%7B%5Bl+1%5D%7Da_%7Bi%2Cj%7D%5E%7B%5Bl%5D%7D%20+%20b%5E%7B%5Bl+1%5D%7D%29%24%uFF0C%24a_%7Bi%2Cj%7D%5E%7B%5Bl+1%5D%7D%2C%20a_%7Bi%2Cj%7D%5E%7B%5Bl%5D%7D%24%u5747%u662F%24%201%5Ctimes32%24%u5411%u91CF%u3002%u5982%u679Cfilter%u6709%u5F88%u591A%u4E2A%uFF0C%u5219%u76F8%u5F53%u4E8E%u4E00%u4E2A%u5C0F%u578B2%u5C42%281%u4E2A%u9690%u85CF%u5C42%29%u7684%u795E%u7ECF%u7F51%u7EDC%u3002%u8FD9%u5C31%u662F%u6240%u8C13%u7684%u7F51%u7EDC%u4E2D%u7684%u7F51%u7EDC%u3002%0A%u4F7F%u75281x1%20convolution%u6216%u8005network%20in%20network%u7684%u597D%u5904%u662F%uFF0C%u53EF%u4EE5%u7F29%u51CF%u8F93%u5165%u56FE%u50CF%u7684%u901A%u9053%u6570%u3002%u4ECE%u800C%u8FBE%u5230%u51CF%u5C11%u8FD0%u7B97%u91CF%u7684%u6548%u679C%u3002%0A%0A%23%23%23%20%u8FD0%u7528Network%20in%20network%u6765%u964D%u4F4E%u8FD0%u7B97%u91CF%0A%21%5BAlt%20text%7C400x0%5D%28./1537485731408.png%29%0A%u8FD9%u6837%u4E00%u6B21%u6620%u5C04%u7684%u8FD0%u7B97%u91CF%u662F28x28x192x5x5x32%20%3D%20120M%0A%21%5BAlt%20text%7C600x0%5D%28./1537485831290.png%29%0A%u901A%u8FC7%u4E00%u4E2A1x1convolution%u505A%u8FC7%u5EA6%u7684%u8BA1%u7B97%u91CF%u662F28x28x192x1x1x16%20+%2028x28x16x5x5x32%20%3D%2012.4M%0A%u7F29%u5C0F%u5230%u63A5%u8FD11/10%uFF0C%u76F8%u5F53%u53EF%u89C2%u4E86%u3002%u800C%u4E14%u56E0%u4E3Anetwork%20in%20network%u7684%u5F15%u5165%uFF0C%u867D%u7136%u901A%u9053%u6570%u7F29%u51CF%u4E86%uFF0C%u4F46%u5E76%u4E0D%u4F1A%u5F71%u54CD%u6700%u7EC8%u6A21%u578B%u7684performance%u3002%0A%u4E2D%u95F4%u76841x1%20convolution%u53C8%u79F0%u4E3A%u8BE5%u7F51%u7EDC%u7684bottle%20neck%uFF0C%u5F88%u5F62%u8C61%u7684%u6BD4%u55BB%0A%21%5BAlt%20text%7C350x0%5D%28./1537486081451.png%29%0A%0A%23%23%23%20Inception%20%28GoogLeNet%29%0A%21%5BAlt%20text%5D%28./1537493512332.png%29%0A%u8FD9%u5C31%u662F%u4E00%u4E2A%u5B8C%u6574%u7684Inception%u7F51%u7EDC%uFF0C%u91CC%u9762%u5305%u542B%u4E86%u5F88%u591A%u5982%u4E0B%u7684Inception%20Module%uFF1A%0A%21%5BAlt%20text%7C400x0%5D%28./1537494165060.png%29%0A%u5E26branch%u7684Inception%u7F51%u7EDC%0A%21%5BAlt%20text%5D%28./1537495522238.png%29%0A%u6BCF%u4E2A%u5206%u652F%u90FD%u6709%u4E00%u4E2ASoftmax%u8F93%u51FA%u5C42%u3002%u8FD9%u4E9B%u5206%u652F%u4E5F%u80FD%u8F93%u51FA%u9884%u6D4B%u503C%uFF0C%u8FD9%u6837%u786E%u4FDD%u7F51%u7EDC%u7684%u6240%u6709%u9690%u85CF%u5355%u5143%u548C%u4E2D%u95F4%u5C42%u90FD%u53C2%u4E0E%u4E86%u7279%u5F81%u8BA1%u7B97%u3002%u6309%u7167Andrew%u7684%u8BF4%u6CD5%uFF0C%u8FD9%u4E9B%u5206%u652F%u53EF%u4EE5%u8D77%u5230regularization%u7684%u4F5C%u7528%uFF0C%u53EF%u4EE5%u6709%u6548%u964D%u4F4E%u7F51%u7EDC%u8FC7%u62DF%u5408%u7684%u53EF%u80FD%u6027%u3002%0A%0A%0A%23%23%20%u53C2%u8003%u6587%u732E%0A-%20LeNet-5%3A%20LeCun%20et%20al.%2C%201998.%20Gradient-based%20learning%20applied%20to%20document%20recognition%0A-%20AlexNet%3A%20Krizhevsky%20et%20al.%2C%202012.%20ImageNet%20classification%20with%20deep%20convolutional%20nerual%20networks%0A-%20VGG-16%3A%20Simonyan%20%26%20Zisserman%202015.%20Very%20deep%20convolutional%20networks%20for%20large-scale%20image%20recognition%0A-%20ResNet%3A%20He%20et%20al.%2C%202015.%20Deep%20residual%20networks%20for%20image%20recognition%0A-%20Network%20in%20network%3A%20Lin.%20et%20al.%2C%202013.%20Network%20in%20network%0A-%20Inception%3A%20Szegedy%20et%20al.%2C%202014%2C%20Going%20Deeper%20with%20Convolutions